

CLEARING THE AIR An APCD Workshop Series

July 16 APCD 101/Louisville's Air Quality

July 30 Air Quality & Health/Reducing My Pollution Impact

Aug. 13 Odors: Reporting and Responding

<u>Aug. 27</u> The APCD Regulatory Process

Sept. 10 How We Monitor Air Quality

Sept. 22 Understanding Risk: A Technical Workshop*

(How to use EJ Screen, TRI, and other EPA data tools)

Sept. 24 The STAR Program/Environmental Justice

QUESTIONS?

Call us at

(502) 574-6000

Workshops held at the Louisville Free Public Library, 301 York St. Each session is 5:30-7 p.m.

(*Technical Workshop 10 a.m.-2 p.m. Registration Required. Send email to ClearingTheAir@louisvilleky.gov)

www.louisvilleky.gov/APCD

The APCD Workshop Series seeks to:

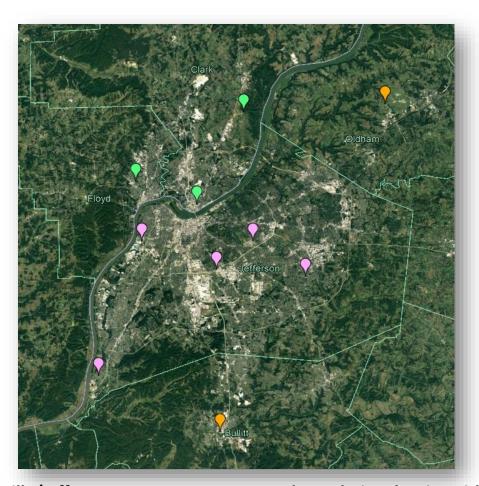
- Increase the community's understanding of Louisville's air quality and of APCD's many functions
- Provide information that will empower citizens
- Provide a more informal forum for Q&A with APCD and opportunity for feedback
- Improve related public outcomes

Today's workshop seeks to:

- Help the community better understand how APCD uses equipment, federal laws, and local regulations to monitor air quality.
- 2. Provide data and resources to the public that better explain Louisville's complex air shed.

CLEARING THE AIR An APCD Workshop Series

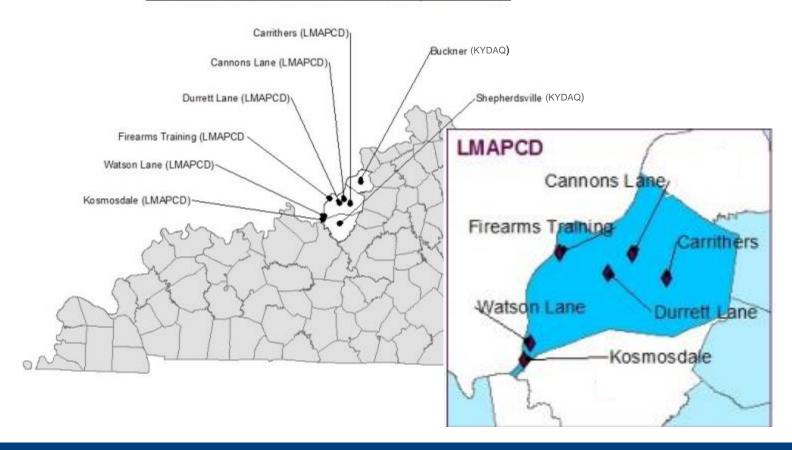
- There are no silly questions
- Public Participation =



- Interactive
 - Ask questions throughout the workshop as they come to mind
 - Use the Post-it notes to write down questions and place them around the room

Louisville MSA Network

Air quality monitor operators:


- Louisville Metro Air Pollution Control District (pink markers)
- Kentucky Division for Air Quality (orange markers)
- Indiana Department of Environmental Management (green markers)

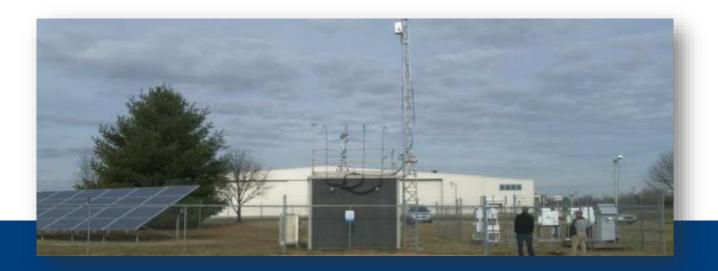
*Louisville/Jefferson County, KY-IN MSA and population density within the MSA. *Source: Kentucky State Data Center*. Jefferson County, KY is the most populous county within the MSA.

Monitoring for Jefferson County, KY

Louisville/Jefferson County, KY-IN

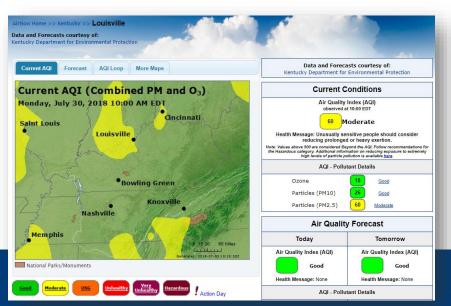
Why do we monitor?

40 CFR 58.2:


- Support SIPs, national air quality assessments, and policy decisions
- Judge compliance with and/or progress made towards ambient air quality standards
- Activate emergency control procedures that prevent or alleviate air pollution episodes; develop long-term control strategies

Why do we monitor?

- To provide air pollution data for the general public (AQI)
- Observe pollution trends throughout the region, including non-urban areas
- To offer a database for research and evaluation of effects
- Protect human health and welfare
- To improve the overall quality of the air we breathe



Air Quality Index

- The AQI is generally based on monitored values for:
 - Ozone
 - Particle pollution
- AQI value of 100 generally corresponds to the National Ambient Air Quality Standards (NAAQS).
- AQI values at or below 100 are generally thought of as

satisfactory.

A Guide to the AQI

AQI Values	Actions to Protect Your Health From Ozone
Good (0 - 50)	None
Moderate (51 - 100*)	Unusually sensitive people should consider reducing prolonged or heavy outdoor exertion.
Unhealthy for Sensitive Groups (101 - 150)	The following groups should reduce prolonged or heavy outdoor exertion: - People with lung disease, such as asthma - Children and older adults - People who are active outdoors
Unhealthy (151 - 200)	The following groups should avoid prolonged or heavy outdoor exertion: - People with lung disease, such as asthma - Children and older adults - People who are active outdoors Everyone else should limit prolonged outdoor exertion.
Very Unhealthy (201 - 300)	The following groups should avoid all outdoor exertion: - People with lung disease, such as asthma - Children and older adults - People who are active outdoors Everyone else should limit outdoor exertion.

What do we monitor?

- 40 CFR part 50 of the Clean Air Act (CAA) requires
 EPA to set the NAAQS
- NAAQS are:
 - Health-based standards
 - Set by EPA to address six principal pollutants, which are called "criteria" air pollutants

Criteria Pollutants

Carbon Monoxide (CO) – Fatigue/Headaches

Lead (Pb) – Neurological Effects

Sulfur Dioxide (SO₂) – Wheezing

Nitrogen Dioxide (NO₂) – Irritates Airways

Particulate Matter (PM_{2.5}, PM₁₀) – Aggravates Asthma

Ozone (O₃) – Irritates Respiratory System

NAAQS

Pollutant [links to historical tables of NAAQS reviews]		Primary/ Secondary	Averaging Time	Level	Form
Carbon Monoxide (CO)		priman/	8 hours	9 ppm	Not to be exceeded more than once per year
Carbott Morioxide (CO)		primary	1 hour	35 ppm	Not to be exceeded more than once per year
Lead (Pb)		primary and secondary	Rolling 3 month average	0.15 μg/m ³ (1)	Not to be exceeded
<u>Nitrogen Dioxide (NO₂)</u>		primary	1 hour	100 ppb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		primary and secondary	1 year	53 ppb (2)	Annual Mean
Ozone (O ₃)		primary and secondary	8 hours	0.070 ppm ⁽³⁾	Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years
		primary	1 year	12.0 μg/m ³	annual mean, averaged over 3 years
	DM	secondary	1 year	15.0 μg/m ³	annual mean, averaged over 3 years
Particle Pollution (PM)	PM _{2.5}	primary and secondary	24 hours	35 μg/m ³	98th percentile, averaged over 3 years
PM ₁₀		primary and secondary	24 hours	150 μg/m ³	Not to be exceeded more than once per year on average over 3 years
Sulfur Dioxide (SO ₂)		primary	1 hour	75 ppb (4)	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
_		secondary	3 hours	0.5 ppm	Not to be exceeded more than once per year

Current NAAQS Status

Pollutant	Standard	Averaging Time	Attainment Status	
Carbon Monoxide	9 ppm	8-hour	Attainment	
Carbon Monoxide	35 ppm	1-hour	Attainment	
Lead	$0.15 \mu g/m^3$	Rolling 3-month Average	Attainment	
Nitrogon Diovido	53 ppb	Annual Average	Attainment	
Nitrogen Dioxide	100 ppb	1-hour	Attainment	
Particulate Matter (PM10)	150 μg/m³	24-hour	Attainment	
Doutionlate Matter (DM2 E)	12.0 μg/m ³	Annual Average	Unclassifiable ¹	
Particulate Matter (PM2.5)	35 μg/m ³	24-hour	Attainment	
Ozone	0.070 ppm	8-hour	Nonattainment ²	
Sulfur Dioxide	75 ppb	1-hour	Partial County Nonattainment	

^{1 –} EPA proposed redesignation to attainment May 30, 2018. 83 FR 24714.

^{2 –} Final designation published June 4, 2018, effective Aug. 3, 2018. 83 FR 25776.

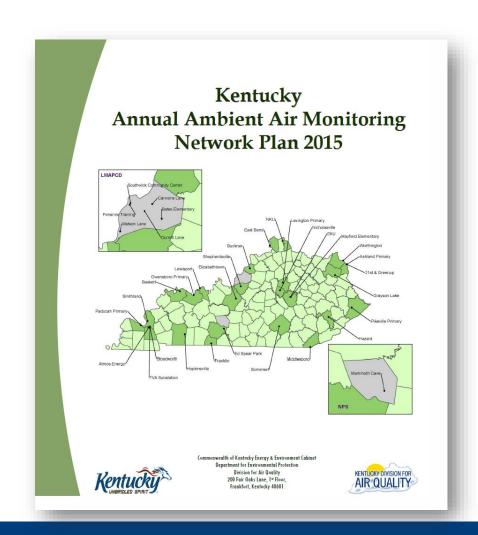
What else do we monitor?

 APCD also operates supporting meteorological equipment, special purpose, and research monitors

How do we monitor?

- 40 CFR Part 50 Technical requirements for the specific Federal Reference Methodologies (FRM) defined in appendices
- 40 CFR Part 58 Ambient Air Quality Surveillance
 - Annual Network Plan
 - Technical QA/QC requirements
 - Operating Schedules
 - Data Certification
 - Data Submittal
 - Network Design
 - Probe and Monitoring Path Siting Criteria

Monitoring – Ozone Method


- Federal reference method (FRM)
 - Based on gas-phase chemiluminescence (e.g. glowstick)
- Federal equivalent method (FEM)
 - Based on strong absorption band of ozone at a specific region in the ultraviolet spectrum

Annual Network Plan

- Submitted to the EPA annually
- Establishes and maintains an air quality surveillance system
- Includes a statement of purposes for each monitor
- Provides evidence that the site and operation of each monitor meets all applicable federal requirements

Network Plan

- Example Siting Requirements
 - Horizontal and vertical placement
 - Spacing from sources, obstructions, trees, and roadways
 - Interference on monitoring path
 - Probe material

CSA/MSA: Louisville/Jefferson County-Elizabethtown-Madison, KY-IN CSA; Louisville/Jefferson County, KY-IN MSA

401 KAR 50:020 Air Quality Region: Louisville Interstate (078)

Site Name: Southwick Community Center AOS Site ID: 21-111-0043

Location: 3621 Southern Avenue, Louisville, KY 40211

GPS Coordinates: 38.23319, -85.81566 (NAD 83) Date Established: July 1, 1983 Inspection Date: December 17, 2014

Inspection By: Jennifer F. Miller Site Approval Status: Site and monitors meet all design criteria for the monitoring network

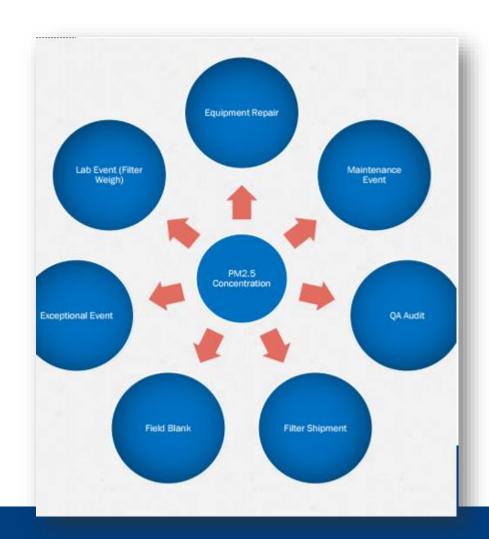
The monitoring site is located on the roof of the Southwisk Community Center in Louisville, Kentucky, The sample inlets are 6 meters above ground level and 45 meters from the nearest road. Upon inspection, the sample inlets and monitors were found to be in good condition. The air monitoring site meets the criteria established in 40 CFR Part 58, Appendices A, C, D, E and G.

Monitoring Objective

The monitoring objectives are to determine compliance with National Ambient Air Quality Standards and to provide pollution levels for daily index reporting.

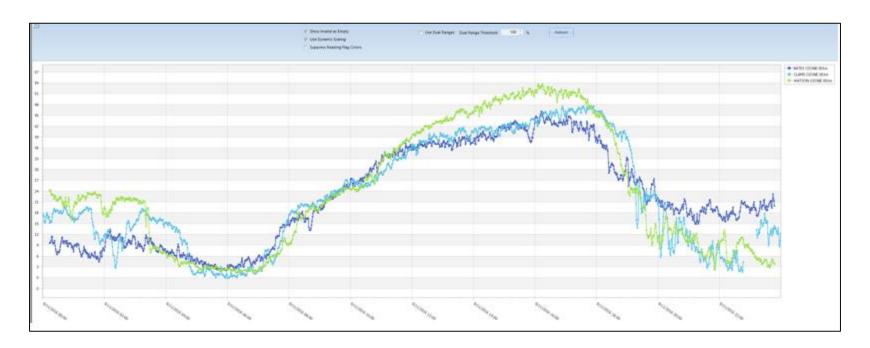
Monitors:

Monitor Type Inlet Heigh (meter PM ₁₀ BAM 5.9		Designation	Analysis Method	Frequency of Sampling		
		SLAMS AQI	Automated Equivalent Method utilizing Beta Attenuation.	Continuously		
FRM PM _{2.5}	6.0	SLAMS	Gravimetric	24-hours every third day		
Collocated FRM PM _{2.5}	6.0	SLAMS	Gravimetric	24-hours every sixth day		
PM _{2.5} BAM	6.0	SLAMS AQI	Automated Equivalent Method utilizing Beta Attenuation.	Continuously		
Meteorological	11.4	Other	AQM grade instruments for wind speed, wind direction, humidity, barometric pressure, and temperature	Continuously		
-Rain Gauge	5.0	Other	AQM grade instrument for precipitation.	Continuously		


Quality Assurance/Quality Control Requirements

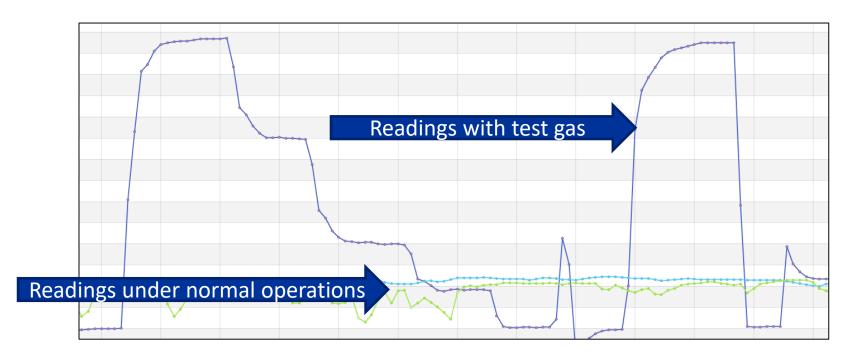
- APCD performs a series of management activities including planning, implementation, and assessment – necessary to provide quality data
 - APCD's air monitoring section collects more than 1.5
 million data points per month and each point is
 evaluated by staff (does not include intermittent
 sampling)

What influences monitoring data?


- Did the air monitoring equipment need repair?
- Were there any exceptional events (e.g. smoke from wildfires in California, fireworks, etc.) that impacted the data?
- Was the data checked for quality assurance?

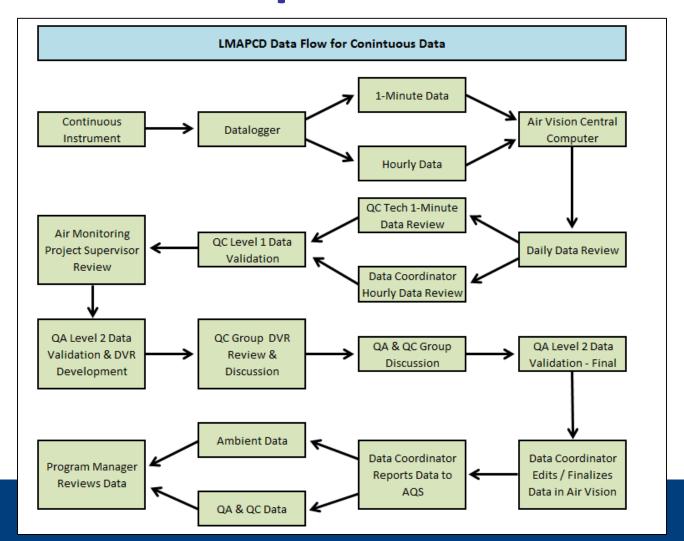
Data Review

Example: Routine Ambient Data Analysis



^{*24} hours of 1-minute resolution data from three ozone analyzers.

Data Review


Example: Routine Quality Control Check

^{*}Method used to verify accuracy of an ozone monitor.

Quality Assurance/Quality Control Requirements

Quality Assurance Elements

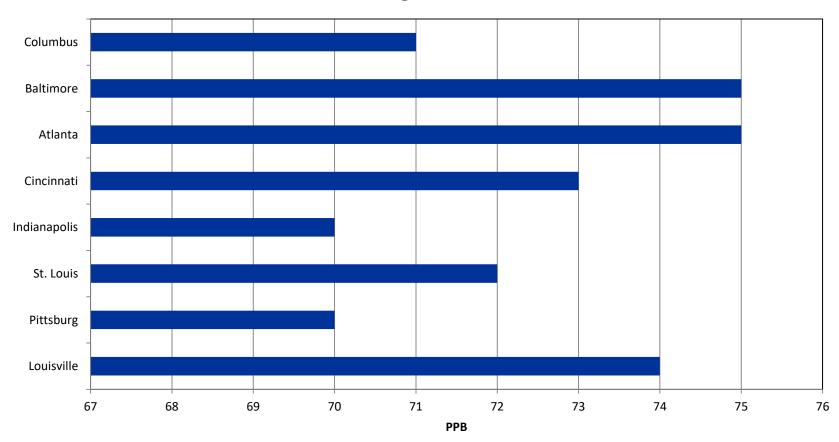
- Quality Managements Plans,
 Quality Assurance Project
 Plans, Standard Operating
 Procedures
- Certification of Standards
 - Photometers
 - Calibrators
 - Flow devices
- Performance Evaluations
- Internal System Audits
- External System Audits
- Data Audits

Data Certification

- Agency shall submit to EPA a letter to certify data collected meet all Quality Assurance (QA) criteria
- Certify that all previous year's data is accurate and complete
- APCD re-evaluates yearly dataset, based on statistics, summaries, and QA data

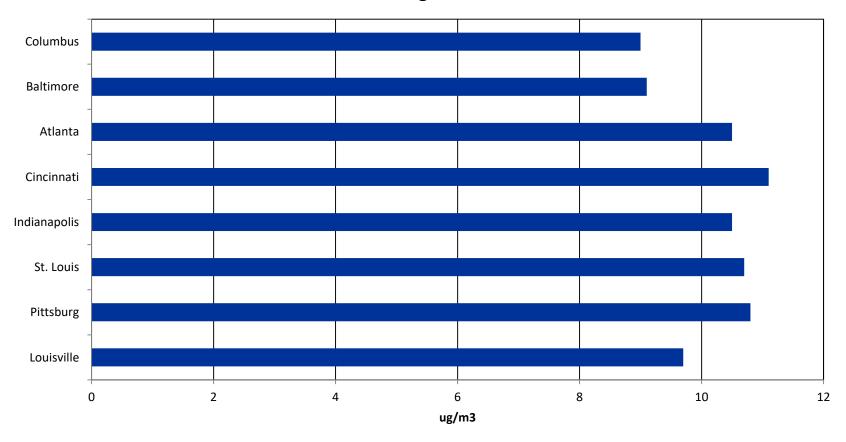
Data Certification

Para PQA	motori	-	Cy.J	effersor	County	y, KY	' Air Pol	lution	Conti	rol Distric	(054	9)								
Qual	O Nam	e:	J	effersor	County	y, K)	tions (88 ⁄ Air Pol val Date	llution		rol Distric 7/2011	(054	9)								
	Colloc		#	Sites	# Sites	4 C	% ollocated	CV	cv u	Criteria B Met?			dited	# PEP	# PEP Submitted	%	loto	Bias	Criteria Met?	
	Method 118		4	1	1	<u> </u>	100	4.37	5.00		WEL		1	5	2	40		-7.09	Y	
Mon	itors S	umn	narie	s																
							Routine D	ata (ug/ı	m3)		Flow	Rate Audit		Collocat	ion	PEP		Con	currence FI	ag
AQS	Site ID	POC	Metho	Monito		Min	5.77	ceed.0			Bias	% Complete	CV	% Complet	PQAO e Crit. Met			AQS Re Flag	c CA Rec <u>Flag</u> (EPA Concu
21-11	1-0043	1	118	SLAMS	9.65	2.3	50.2		0	100	-0.33	100	5.0	0 100	Y	Υ	Y	Y	Υ	Υ
										EP	A Comn	nent: Cert	rec'd (02/03/16. C	omplete. dp	almer				
21-11	1-0043	2	118	SLAMS	10.47	2.5	49.7		0	98	-0.43	100			Y	Y	Y	Y	Υ	Y
										EP	A Comn	nent: Cert	rec'd (02/03/16. C	omplete. dp	almer				
21-11	1-0043	3	170	SLAMS	10.95	-6.2	410.0		0	85	+0.30				Υ	Υ	Y	Υ	Υ	Υ
										EP		nent: Cert	rec'd (02/03/16. C	omplete. dp	almer				
21-11	1-0051	1	118	SLAMS	9.36	2.2	36.2		0	100	-0.32	100			Υ	Υ	Y	Y	Υ	Υ
04.44	14 0054	0	470	CL ANAC	44.40	2.0	100.0		0				rec'd (02/03/16. C	complete. dp		· ·	V		.,
21-1	11-0051	3	170	SLAMS	11.19	-3.0	400.3		0	91 FF	+0.00	0.500	roold (202146 6	omplete. dp	Y	Y	Υ	Υ	Υ
21-11	11-0067	1	118	SLAMS	8.60	1.8	25.1		0	98	+0.11		recu	<i>32/03/16.</i> C	ompiete, up	Y	Y	V	Y	Υ
_ , ,	11 0001		110	OL/ IIVIO	0.00	1.0	20.1		Ü				rec'd (02/03/16	Complete. dr				3.5	
21-11	11-0067	3	170	SLAMS	9.76	-4.4	88.2		0	97	-0.00		. 50 0 1	02.00/10.0	Y	Y	Y	Y	Υ	Υ
		1120	3335						8	EF	170000	10207	rec'd (02/03/16. 0	Complete. dp	oalmer		100	050	· ·
21-1	11-0075	1	118	SLAMS	9.96	2.7	26.0		0	98	+0.47				Y	Υ	Y	Υ	Υ	Υ
										EF	A Com	nent: Cort	roo'd I	02/03/16 (Complete. dp	oolmor				


Design Values

- Design values are the metrics (statistics) that are compared to the NAAQS to determine compliance. Each pollutant has a unique design value calculation.
- An attainment / non-attainment designation is based on 3 years of complete data
- One year of calculations above the design value does not constitute non-attainment.

Design Values


Ozone 8 hr Design Values 2015-2017

Design Values

PM2.5 Annual Design Values 2015-2017

Network Assessment

- Assessment of the air quality surveillance system every 5 years to determine:
 - If the network meets the monitoring objectives
 - If new sites are needed
 - If existing sites are no longer needed, and
 - Where new technologies are appropriate for incorporation in the ambient air monitoring network

Network Assessment

- Items considered
 - Does the network support proper air quality characterization for areas with high populations of susceptible individuals?
 - Does adding or subtracting sites effect data users?
 - Are there changes needed based on population?

Assessment Considerations

Where Pollution Originates

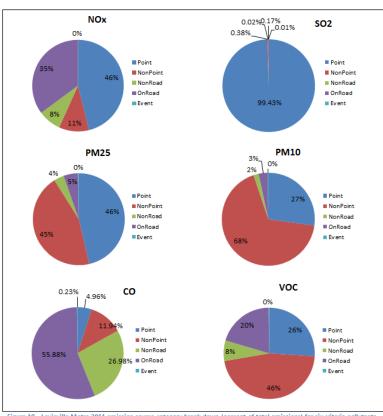
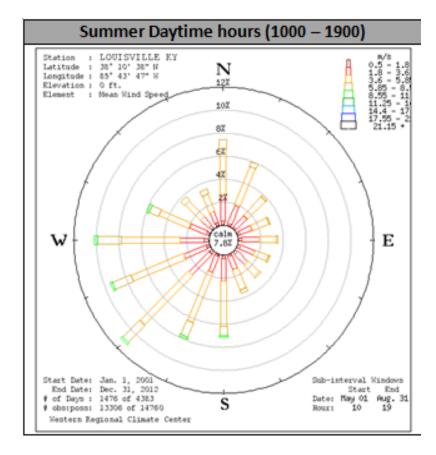



Figure 10 - Louisville Metro 2011 emission source category break down (percent of total emissions) for six criteria pollutants.

Where Pollution Travels

Network Assessment - Ozone

6.1 Ozone Monitoring Requirements

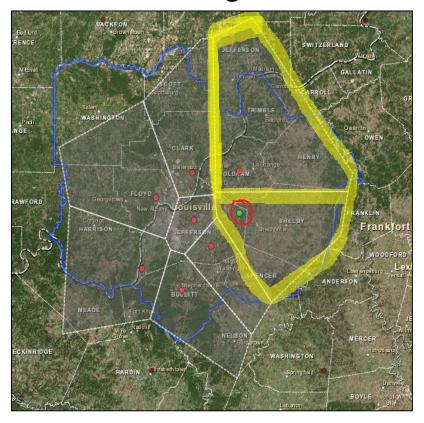
40 CFR Part 58, Appendix D, Section 4.1 contains specific design criteria for an ozone monitoring network. Table D-2 in that section contains the criteria for the minimum number of sites that are to be established. Minimum monitoring requirements for ozone apply to Metropolitan Statistical Areas (MSA). Based on 2014 census data, the population for the MSA is estimated to be 1,269,738. Based on this population estimate, the Louisville MSA is required to have one or two ozone monitors, dependent on the design value. As can be seen in Figure 14, the Louisville MSA contains seven ozone monitoring sites, three of those being operated within Louisville Metro by the LMAPCD. The number of ozone monitors within the MSA far exceeds the minimum monitoring requirements for ozone.

MSA Population	Most Recent 3-yr DV ≥ 85% of any	Most Recent 3-yr DV < 85% of any		
	O3 NAAQS	O3 NAAQS		
>10 million	4	2		
4-10 million	3	1		
350,000 -4 million	2	1		
50,000 - 350,000	1	0		

Table 6 - EPA ozone monitoring requirements as found in 40 CFR Part 58 Appendix D, Table D-2.

AQS Site ID	Site Name	Agency	Established	Monitor Objective	Monitor Scale
21-111-0027	Bates	LMAPCD	1/4/1973	Population Exposure	Urban
21-111-0051	Watson Lane	LMAPCD	7/16/1992	Population Exposure	Neighborhood
21-111-0067	Cannons Lane	LMAPCD	1/1/2010	Population Exposure	Neighborhood
21-185-0004	Buckner	KyDAQ	5/1/1981	Maximum Concentration	Urban
21-029-0006	Shepherdsville	KyDAQ	1/30/1992	Population Exposure	Urban
18-043-1004	Green Valley Elementary	IDEM	1/1/1977	Population Exposure & Maximum Concentration	Neighborhood
18-019-0008	Charlestown State Park	IDEM	5/1/2007	Population Exposure & Maximum Concentration	Urban

Table 7 - Ozone monitoring sites and relevant metadata for ozone monitors located within the Louisville/Jefferson County, KY-IN MSA



Network Assessment - Ozone

Modeling: Current air monitoring sites

 Modeling: Potential future air monitoring sites

Network Assessment - Ozone

- What we determined
 - Current monitoring network exceeds EPA minimum requirements
 - Ozone concentrations and changes in our population may give reason for APCD to evaluate Louisville's current air monitoring networks

- Possible Future Projects
 - Adding air monitors in areas with growing populations (e.g., east Jefferson County)
 - Removal or re-evaluation of current air monitors

- In addition to Criteria pollutant monitoring,
 APCD recently began monitoring for
 Volatile Organic Compounds (VOCs)
- Objectives
 - Characterize ambient VOC concentrations in the vicinity of Rubbertown community
 - Evaluate photochemically reactive compounds in support of ozone reduction efforts (Photochemical Assessment Monitoring Station – PAMS)

Traditional Method

- Manual collection using canisters
- Samples typically collected once every 6 or 12 days
- Samples shipped to lab for analysis
- Samples represents 24-hr period

Modern Method

- Automated Gas Chromatography
 - Two Auto GCs Dual FIDs
- Samples collected every hour
- Samples analyzed in near real time
- Raw data available within the hour
- While temporal resolution is improved, additional challenges exist

Fall 2017

Auto GC installed (Firearms training site)

Spring 2018

Training/ instrument evaluation period

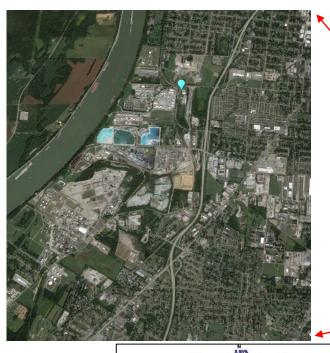
Fall 2018

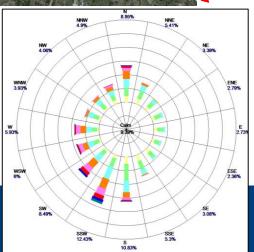
Manufacturer modifications to Auto GC

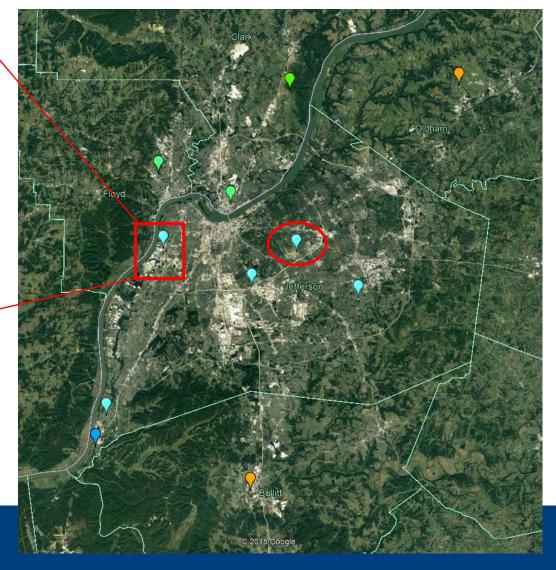
Summer 2019

Install 2nd
Auto GC at
Cannons
Ln. site
(funding
dependent)

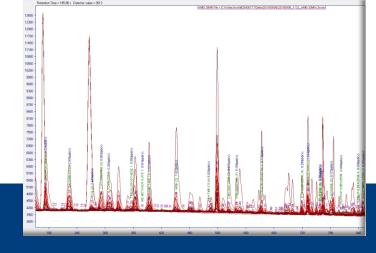
Winter 2017/2018 Hired Chemist


Summer 2018


Trouble shooting, method refinement & develop QAPP


Winter **2018/2019**

Acquisition of QC standards; implement modified measurement system



- Auto GC technology is complex and produces large amounts of data
- APCD is the 2nd AQ agency in the country to operate Chromatotec Auto GC
- Continuous refinement of methodologies expected

 APCD staff have worked extensively with manufacturer and participated in national workgroup calls to improve/

refine method

Next Steps

- Continue development of Quality Assurance Project Plan (QAPP) and Standard Operating Procedures (SOPs)
- Continue to work with Auto GC manufacturer to identify potential improvements in the system
- Work with Data Management Software vendor to finalize new tool for validating & managing large amount of data
- Acquire VOC standards for routine quality control checks
- Make data available to the public

Instrumentation

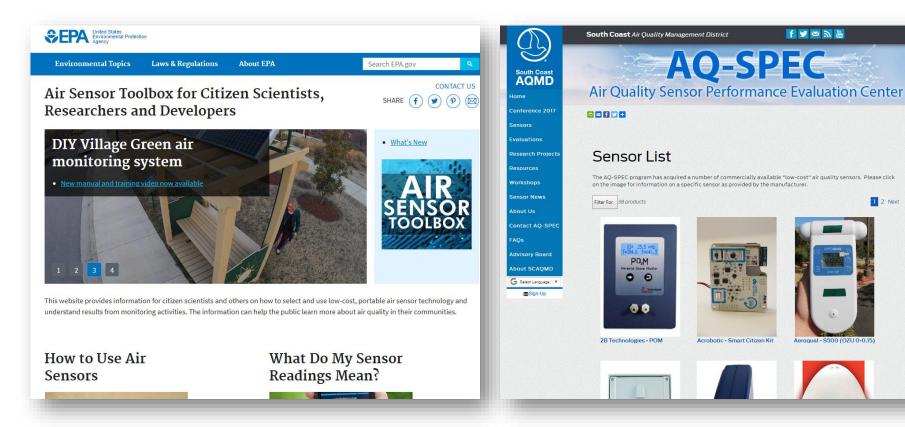
The air monitoring team uses FRM and FEM air pollution analyzers, which have been approved by the EPA for regulatory use.

Data Collection

 Collecting data requires knowledge of chemistry, meteorology, electronics, pneumatics, and more.

Equipment Repair

 Staff operate and repair instruments in all conditions.


New Technology

 APCD is deploying the next generation in continuous particulate monitoring.

How can you monitor the air?

https://www.epa.gov/air-sensor-toolbox

http://yourstory.aqmd.gov/aq-spec/sensors/

Sensor use considerations

 Sensors are not as accurate as FEM/FRM analyzers, and data are not legally defensible for regulatory use.

ARISense used by Green Heart Project.

EPA S-Pod.

Resources

Air Pollution Control District

Louisvilleky.gov/APCD

Louisville Air Watch

<u>Airqualitymap.louisvilleky.gov</u>

Kentucky Division for Air Quality

<u>Air.ky.gov/Pages/DivisionReports.as</u>

<u>px</u>

Federal Regulations

Code of Federal Regulations (CFR)

Questions?

Louisville Metro Air Pollution Control District

701 W. Ormsby Ave.

Ste. 303

Louisville, Ky. 40203

(502) 574-6000

www.louisvilleky.gov/APCD

Keith H. Talley Sr., Director

